Reference
Examples
We can integrate markdown between $ $
or $$ $$
Single $
will be inline
Double $$
will be centered into a new line
LaTeX | Markdow |
---|---|
\(\widehat{q}\) | \widehat{q} |
\(|x-x_M|\) | |x-x_M| |
\(f_M(x)\) | f_M(x) |
\(\displaystyle\sum_{m}\) | \displaystyle\sum_{m} |
\(\langle{x,w_m}\rangle\) | \langle{x,w_m}\rangle |
\(\| v_m \|\) | \| v_m \| |
\(\cos\) | \cos |
\(\mathbb{Z}^d\) | \mathbb{Z}$^d |
\(\infty\) | \infty |
\(f \in L^2\) | f \in L^2 |
$$ | \implies |
\(\lim\limits_{M \to \infty}\) | \lim\limits_{M \to \infty} |
\(P(A|B) = \frac{P(B|A)*P(A)}{P(B)}\) | P(A|B) = \frac{P(B|A)*P(A)}{P(B)} |
\(\begin{align} \\ Q_t(a) &= \frac{\text{sum of rewards when } \mathit{a} \text{ taken prior to }\mathit{t}}{\text{number of times } \mathit{a} \text{ taken prior to }\mathit{t}} \\ & = \frac{\displaystyle\sum_{i=1}^{t-1} R_i.\mathcal{1}_{A_i=a}}{\displaystyle\sum_{i=1}^{t-1} \mathcal{1}_{A_i=a}} \end{align}\) | \begin{align} \\ Q_t(a) &= \frac{\text{sum of rewards when } \mathit{a} \text{ taken prior to }\mathit{t}}{\text{number of times } \mathit{a} \text{ taken prior to }\mathit{t}} \\ & = \frac{\displaystyle\sum_{i=1}^{t-1} R_i.\mathcal{1}_{A_i=a}}{\displaystyle\sum_{i=1}^{t-1} \mathcal{1}_{A_i=a}} \end{align} |
\(A_t=\underset{a}{\mathrm{argmax}}{\text{ }Q_t(a)}\) | A_t=\underset{a}{\mathrm{argmax}}{\text{ }Q_t(a)} |
\(p(s',r|s,a) \doteq Pr\{S_t=s', R_t=r|S_{t-1}=s, A_{t-1}=a\}\) | p(s',r|s,a) \doteq Pr\{S_t=s', R_t=r|S_{t-1}=s, A_{t-1}=a\} |
\(q_\pi(s,a) \doteq \mathbb{E}[R_{t+1}+\gamma.G_{t+1}|S_t=s, A_t=a]\) | q_\pi(s,a) \doteq \mathbb{E}[R_{t+1}+\gamma.G_{t+1}|S_t=s, A_t=a] |
\(v_*(s)\doteq \max\limits_{\pi} v_\pi(s), \forall s \in S\) | v_*(s)\doteq \max\limits_{\pi} v_\pi(s), \forall s \in S |
\(q_\pi(s,a) \doteq \mathbb{E}[R_{t+1}+\gamma.G_{t+1}|S_t=s, A_t=a]\) | q_\pi(s,a) \doteq \mathbb{E}[R_{t+1}+\gamma.G_{t+1}|S_t=s, A_t=a] |
\(l(w,b)=\frac{1}{N}\displaystyle\sum_{n=1}^{N}(y_n-(x_nw+b))^2\) | l(w,b)=\frac{1}{N}\displaystyle\sum_{n=1}^{N}(y_n-(x_nw+b))^2 |
\(\nabla l(w,b) = \begin{bmatrix}\frac{\partial l(w,b)}{\partial w_1}\\ \vdots \\\frac{\partial l(w,b)}{\partial w_d}\end{bmatrix}\) | \nabla l(w,b) = \begin{bmatrix}\frac{\partial l(w,b)}{\partial w_1}\\ \vdots \\\frac{\partial l(w,b)}{\partial w_d}\end{bmatrix} |
\(\\ H(X) = – \sum_{x \in X} P(x) * \log(P(x))\) | \\ H(X) = – \sum_{x \in X} P(x) * \log(P(x)) |
\(X \sim \mathcal{N}(\mu,\,\sigma^{2})\) | X \sim \mathcal{N}(\mu,\,\sigma^{2}) |
\(\sqrt[n]{1+x+x^2+x^3+\dots+x^n}\) | \sqrt[n]{1+x+x^2+x^3+\dots+x^n} |